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Abstract

Infiltration of ground water on the ground water surface has been modeled in the
form of non-linear Boussinesq’s equation. The height of water mound is obtained as
a function of time t and distance x using group theoretical approach. Its graphical
representation has been obtained by using Mat lab coding.

1. Introduction

Ground water is extremely important to our way of life. Most drinking water supplies

and often irrigation water for agricultural needs are drawn from underground sources.

More than 90% of the liquid fresh water available on or near earth’s surface is groundwa-

ter. Groundwater is derived from rain and melting snow that percolate downward from

the surface; and collected in the open pore spaces between soil particles or in cracks and

fissures in bedrock. The process of percolation is called infiltration.

Infiltration is the process by which water on the ground surface enters the soil. Infiltra-

tion rate in soil science is a measure of the rate at which soil is able to absorb rainfall

or irrigation. It is measured in inches per hour or millimeters per hour. The rate
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decreases as the soil becomes saturated. If the precipitation rate exceeds the infiltration

rate, runoff will usually occur unless there is some physical barrier. It is related to the

saturated hydraulic conductivity of the near-surface soil.

Infiltration is governed by two forces: gravity and capillary action. While smaller pores

offer greater resistance to gravity, very small pores pull water through capillary action

in addition to and even against the force of gravity. The rate of infiltration is affected

by soil characteristics including ease of entry, storage capacity, and transmission rate

through the soil. The soil texture and structure, vegetation types and cover, water

content of the soil, soil temperature, and rainfall intensity all play a role in controlling

infiltration rate and capacity. For example, coarse-grained sandy soils have large spaces

between each grain and allow water to infiltrate quickly.Vegetation creates more porous

soils by both protecting the soil from pounding rainfall, which can close natural gaps

between soil particles, and loosening soil through root action. This is why forested areas

have the highest infiltration rates of any vegetative types.

The top layer of leaf litter that is not decomposed protects the soil from the pounding

action of rain, without this the soil can become far less permeable. In chaparral veg-

etated areas, the hydrophobic oils in the succulent leaves can be spread over the soil

surface with fire, creating large areas of hydrophobic soil. Other conditions that can

lower infiltration rates or block them include dry plant litter that resists re-wetting, or

frost. If soil is saturated at the time of an intense freezing period, the soil can become

a concrete frost on which almost no infiltration would occur. Over an entire watershed,

there are likely to be gaps in the concrete frost or hydrophobic soil where water can

infiltrate.

Once water has infiltrated the soil it remains in the soil, percolates down to the ground

water table, or becomes part of the subsurface runoff process. The process of infiltration

can continue only if there is room available for additional water at the soil surface. The

available volume for additional water in the soil depends on the porosity of the soil

and the rate at which previously infiltrated water can move away from the surface

through the soil. The maximum rate that water can enter a soil in a given condition

is the infiltration capacity. If the arrival of the water at the soil surface is less than

the infiltration capacity, all of the water will infiltrate. If rainfall intensity at the soil

surface occurs at a rate that exceeds the infiltration capacity, pounding begins and
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is followed by runoff over the ground surface, once depression storage is filled. This

runoff is called Horton overland flow. The entire hydrological system of a watershed

is sometimes analyzed using hydrology transport models, mathematical models that

consider infiltration, runoff and channel flow to predict river flow rates and stream

water quality.

The infiltration of incompressible fluid is useful to control salinity of water; contami-

nation of water and agriculture purpose and it also useful in nuclear waste disposable

problems. The infiltration model was first developed by Boussinesq in 1903 and is re-

lated to the original motivation of Polubarinova Kochina [9], Scheidegger [10], Muskat [2]

and Bear J. [1]. Different researchers have discussed this problem with a different point

of views. Verma [12] discussed infiltration of incompressible fluid for inclined plain in

heterogeneous porous media. Mehta M. N. [6] obtained the solution of singular pertur-

bation technique of one dimensional flow in unsaturated porous media. Mehta and Desai

[7] discussed the solution of seepage of ground water in soil by Homotopy perturbation

method. Mehta and patel [8] discussed solution of Burger’s equation arising into the one

dimensional ground water recharge by spreading in porous media. Mehta and Meher [5]

discussed the Adomian decomposition method for moisture content in one dimensional

fluid flow through unsaturated porous media. Mehta and Yadav [4] discussed the solu-

tion of problem arising during vertical ground water recharge by spreading in slightly

saturated porous media. Joshi and Mehta [3] apply the Group theoretic approach to

the problem of one dimensional fluid flow through unsaturated porous method.

2. Statement of the Problem

Assume that Ground water infiltration take place over large basin area, it enters soil

and achieve some water table. The problem is to determine effective height of the water

table as measure of the initial storage capacity of the basin.
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3. Basic Assumptions

Following observations were used to obtain the governing equation for the Infiltration

of Ground water.

1. The stratum has height hm and lies on the top of horizontal impervious bed which

we label as z = 0.

2. We ignore the transversal variable y and

3. The water mass which infiltrates the soil occupies a region described as

Ω =
{

(x, z) ∈ R
∣∣z ≤ h(x, t)

}
(1)

and hence we assume that there is no partial saturation. Where,z is called the

free boundary function and it determine the height of the free surface and h(x, t)

is the maximum height of the free surface.

4. In this situation we arrive at system of three equations in three unknowns; two

velocity components and pressure in a variable domain.

(a) Equation of mass conservation for an incompressible fluid.
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(b) Two equations of mass conservation of momentum of the Navier stoke type.

5. The resulting system of equations with initial and boundary conditions is too

complicated and in order to simplify the equation, we assume that

(a) We assume that the flow is horizontal, i.e. ~V = (u, 0) and

(b) The free boundary function h(x, t) has small gradients.

6. Hence, the simplified view of the 2-dimensional infiltration of Ground water flow

is given by,

4. Formulation of the Problem
The momentum equation in vertical component(uz) is given by,

ρ

(
duz
dt

+ v∇uz
)

= −∂p
∂z
− ρg (2)

Neglecting the left hand side of above equation(2) then and integrating it with
respecting to z, we obtain

p+ ρgz = C (3)

If we impose the continuity of the pressure across the interface and assuming
the constant atmospheric pressure in the air that fills the pore of the dry region
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z > h(x, t) and letting p = 0 on the surface z = h(x, t) in the equation(3) gives
us,

ρgh = C (4)

Hence, from equation (2) and (3) we obtain,

p = ρg(h− z) (5)

In other words, the pressure is determined by the hydrostatic approximation.
Considering the mass conservation law for a section S = (x, x + a) × (0, C), we
get

ε
∂

∂t

[∫ x+a

x

∫ h

0

dzdx

]
= −

∫
∂S

(
~V · n

)
dl (6)

Where, ε is the porosity of the medium (i.e fraction of the volume available for flow

circulation), ~V denotes the velocity, which is obeys the Darcy’s law that includes
the gravity effect.

~V = −
(
k

µ

)
∇(p+ ρgh) (7)

Considering the velocity component of ~V along the lateral surface (i.e ~V · n = u),
we arrive at

u = −k
µ

(
∂p

∂x

)
(8)

Hence, from equation(5) and (8), we conclude that

u = −ρgk
µ

(
∂h

∂x

)
(9)

Inserting the expression of u in the equation(6), we get

ε
∂h

∂t
=

(
ρgk

µ

)
∂

∂x

[∫ h

0

∂

∂x
h · dz

]
(10)

The above equation(10) is in the form of non-linear Boussinesq equation and which
can be rewritten as

∂h

∂t
= β

∂2

∂x2

[
h2
]
; Where β =

ρgk

εµ
(11)

The above equation(11) gives the water table at any distance x and at any time t.

Using the dimensionless variables T =

(
2ρgk

εµL2

)
t and X =

x

L
, it can be simplified

to
∂h

∂T
=

∂

∂X

[
f(h)

∂h

∂X

]
. Where f(h) = h. (12)
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The appropriate initial and boundary conditions for the above problem are given
by

h(x, 0) = h1 at T = 0 and for any distanceX > 0 (13)

h(0, T ) = 1 for any time T > 0 (14)

h(L, T ) = 0 atX = L and for any timeT > 0. (15)

∂h

∂X
= −ω at time X = 0. (16)

5. Solution of the Problem
Consider the infinitesimal transformations of the dependent variable h and

two independent variables X and T , where infinitesimal generator is given by
twice prolonged operator Γ as

Γ = ξ
∂

∂X
+ η

∂

∂T
+ ζ

∂

∂h
+ ζ1

∂2

∂hX
+ ζ2

∂2

∂hT
+ ζ11

∂3

∂hXX
(17)

Rewriting the equation(12) as,

hT = F (X,T ) = f(h)hXX − f
′
(h)(hX)2 = 0 (18)

From equation(17) and equation(18) the invariance condition is given by,

Γ(hT )

∣∣∣∣
F=0

=

[
ξ
∂

∂X
+ η

∂

∂T
+ ζ

∂

∂h
+ ζ1

∂2

∂hX
+ ζ2

∂2

∂hT
+ ζ11

∂3

∂hXX

]
hT

∣∣∣∣
F=0

(19)

Here the coordinates of first prolongation of the twice prolonged operator (17) is
given by,

ζ1 = ζX + (ζh − ξX)hX − ηXhT − ξhh2X − ηhhXhT (20)

ζ2 = ζT − ξThX + (ζh − ηT )hT − ξhhXhT − ηhh2T (21)

Similarly the coordinates of second prolongation of the twice prolonged operator
(17) is given by,

ζ11 = ζXX + (2ζhX − ξXX)hX − ηXXhT + (ζhh − 2ξhX)h2X (22)

− ηhXhXhT − ξhhh3X − ηhhh2XhT + (ζh − 2ξX − 3ξhhX − ηhhT )hXX

− 2(ηX + ηhhX)hXT .

Substituting the right hand side of equation(18) in the equation(19) and using
formula of coordinates of first prolongation(20), (21) and the formula of second
prolongation(22) and then equating to zero the coefficients of different powers of
remaining derivatives, we obtain the set of determining equations for symmetry
group of the governing equation(12). The above determining equations are first
order linear partial differential equations in ξ, η and ζ.
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hXhXX 2f(h)(ηhXf(h) + ξh) + f
′
(h)ηX = 0

hXX ζf
′
(h)− f 2(h)ηXX − f(h)(2ξX − ηT ) = 0

hXhXT f(h)ηh = 0

hXT f(h)ηX = 0

h4X f
′
(h)ηh + f(h)ηhh = 0

h3X 2
[
f

′
(h)
]2
ηX + f(h)ξXX + f

′
(h)ξh + 2f(h)f

′
(h)ηhX = 0

h2X f(h)ζhh + f
′′
(h)ζ − 2f(h)ξhX − f

′
(h)(2ξX − ηT )

+f
′
(h)ζh − f(h)f

′
(h)ηhh = 0

hX 2f(h)ζhX + 2f
′
(h)ζX − f(h)ξXX + ξT = 0

1 ζT − f(h)hXX = 0

Here the first column lists combinations of derivatives and the second column con-
tains the corresponding functional coefficients (up to a constant factor)) identical
expression and those obtained by differentiation is omitted. Since f(h) 6= 0 from
the first equation of the above table, we conclude that

η = η(T ) (23)

From the equations second equation of the table and (23) we conclude that

ξ = ξ(X,T ) (24)

From the equations (23) and (24), we conclude that

ζ =
f(h)(2ξX − ηT )

f ′(h)
(25)

Taking into account the relations obtained above, we can rewrite the system given
by the table in the form

[ff
′
f

′′′ − f(f
′′
)2 + (f

′
)2f ”](2ξX − ηT ) = 0 (26)

f [4ff
′′ − 7(f

′
)2ξXX − (f

′
)3]ξT = 0 (27)

2fξXXX − ξXT + ηTT = 0 (28)

In general, for arbitraty f(h), equation (26) implies (2ξX − ηT ) = 0 and the
equation(27) implies ξT = 0. From the equation(28), we get ξ = c1 + c2X and
therefore η = 2c2T + c3. It follows that for arbitrary f(h), solving the above
system of linear partial differential equations called determining equations which
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is spanned by four dimensional Lie-algebra we obtain the most general infinite
symmetry of the governing equation(12) as,

Γ1 =
∂

∂X
,Γ2 =

∂

∂T
,Γ3 = X

∂

∂X
+ 2T

∂

∂T
and Γ4 = 3X

∂

∂X
+ 2h

∂

∂h
(29)

5.1 Invariant solution with respect to operator Γ3

For an arbitrary function f(h), the invariant solution corresponding to operator

Γ3 = 2T
∂

∂T
+X

∂

∂X
is given by the following first order linear partial differential

equation.

Γ3I = 0⇒ 2T
∂I

∂T
+X

∂I

∂X
+ (0)

∂I

∂h
= 0 (30)

The corresponding characteristic system of ordinary differential equations from
equation(30) are given by,

dX

X
=

dT

2T
and dh = 0 (31)

admits the integrals

I1 = XT−1/2 = C1 and I2 = h = C2 (32)

are invariants of the operator Γ3. Taking I2 = φ(I1), we get

h = φ(z) and z = XT−1/2. (33)

Where φ(z) is a function to be determined in the further analysis. Substitut-
ing (31) into the equation(12), we arrive at the second order nonlinear ordinary
differential equation as,

2[f(φ)φ
′

z]
′

z + zφ
′

z = 0 (34)

which describes an invariant (self-similar) solution. Applying Leibniz’s rule eval-
uating nth derivative at z = 0, we obtain an recurrence relation as,

φn+2(0) = − 1

φ(0)

[
2φ

′
(0)φn+1(0)(n+ 1) + nφn(0)[2φ”(0) + 1] (35)

+
n∑

k=2

(
n

k

){
2φk+1(0)φn−k+1(0) + φk(0)φn−k+2(0)

}]
Applying initial conditions(14) & (16), the abvoe equation(35) we obtain

φ(0) = 1, φ
′
(0) = −w, φ”(0) = −w2, (36)

φ
′”(0) = −

(
3w3 − w

2

)
, φiv(0) = −

(
29

2
w4 − 3w3

)
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Hence, substituting the value (36), in the Maclaurin’s series of φ(z) we get,

φ(z) =
∞∑
k=0

φk(0)
zk

k!

= φ(0) + zφ
′
(0) +

z2

2!
φ

′′
(0) + φ

′′′
(0)

z3

3!
+
z4

4!
φiv(0) +−−

∴ φ(z) = 1− wz − w2z2

2!
−
(

3w3 − w

2

) z3
3!
−
(

29

2
w4 − 3w3

)
z4

4!
+−− (37)

From the equations(37) & (33), height of the water mound is given by,

h(X,T ) = 1−Xw√
T
−w

2X2

T2!
−
(

3w3 − w

2

) X3

T 2/33!
−
(

29

2
w4 − 3w2

)
X4

T 24!
+−− (38)

From the equations(38) & (5), the expression of atmospheric pressure is given by

p =

[
ρg

(
1−Xw√

T
−w

2X2

T2!
−
(

3w3 − w

2

) X3

T 2/33!
−
(

29

2
w4 − 3w2

)
X4

T 24!
+−−

)
−z

]
(39)

From the equation(39) & the equation(8) the expression of velocity is given by,

u = −ρgk
µ

[
− w√

T
−w

2X

T
−
(

3w3 − w

2

) X2

T 2/32
−
(

29

2
w4 − 3w2

)
X3

T 23!
+−−

]
(40)

5.2 Convergence study
Equation(37) represents height of the water mound in the form of Maclaurin’s
series in z and equation(38) represents in original variables X & T . Hence it is
sufficient to discuss the convergence of Maclaurin’s series in z to discuss conver-
gence of equation(38). From the equation(37), consider

uk+1 =
φk+1(0)zk+1

(k + 1)!
&uk =

φk(0)zk

(k)!

and hence as per Ratio test

lim
k⇒∞

|uk+1|
|uk|

= lim
k⇒∞

φk+1(0)

φk(0)

∣∣∣∣ z

k + 1

∣∣∣∣ = 0 < 1.

5.3 Graphical representation of Height of the water mound and Pressure
vs. distance X for a fixed time T obtained with respect to operator Γ3.
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5.4 Invariant solution with respect to operator Γ4.
The invariant solution corresponding to f(h) = h and with respect to the oper-

ator Γ4 = X
∂

∂X
+ 2h

∂

∂h
are describe by the following first order linear partial
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differential equation.

Γ4I = 0⇒ ∂I

∂T
+ 3X

∂I

∂X
+ 2h

∂I

∂h
= 0 (41)

The corresponding system of ordinary differential equations from(33) are given by

dX

X
=

dh

2h
and dT = 0 (42)

and hence the scaling invariant solution of equation(12) is given by,

h(X,T ) = X2

[
A− 6aT

]−1
(43)

Where A is an arbitrary constant. Applying initial condition(13) on the above
equation(35) the solution is given by

h(X,T ) = X2

[
1

X2/h1 − 6aT

]
(44)

h(x, t) =

(
x

L

)2
[(x

L

)2
h1

−
(

6aρgk

εµ

)
t

]−1
(45)

Hence, the atmospheric pressure is given by

p = ρg

[(
x

L

)2
[(x

L

)2
h1

−
(

6aρgk

εµ

)
t

]−1]
(46)

Hence the velocity along the axial direction is given by

u = −ρgk
µ

(
∂h

∂x

)
(47)

= −ρgk
µ

[
2 ·
(
x

L2

)[(x
L

)2
h1

−
(

6aρgk

εµ

)
t

]−1
− 2

(
x3

L4h1

)[(x
L

)2
h1

−
(

6aρgk

εµ

)
t

]−2]
The equation(37) is the solution of governing equation (12) that represents the
height of free surface or water mound of infiltrated water in unsaturated hetero-
geneous porous media for any distance for any time which satisfies both boundary
and initial conditions.

5.5 Graphical representation of the Height of the water mound and
Pressure vs distance X for a fixed time T obtained with respect to
operator Γ4.
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6. Interpretation of the Solution and Discussion

1. Using Lie-group one parameter analysis we obtain Lie-algebra spanned by
four operators Γ1, Γ2, Γ3 & Γ4. The solution corresponding to operators Γ1

& Γ2 is of no use as they give solution in only one variable.
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2. Hence, we obtain solution corresponding to two operators Γ3 & Γ4. The
operator Γ3 leads to similarity solution where as the operator Γ4 gives the
solution in the closed form. Hence, Lie-group analysis method called the
generalization of the similarity methods.

3. The equation(37) and the equation(38) gives the height of water mound and
pressure as a function of X & T obtained with the help of similarity trans-
formation obtained from the operator Γ3 and their graphical representation
is given by in Figure-1 and Figure-2.

4. Both these graphs in decreasing nature as distance X increase for the fixed
time T = 0.6 to 1.

5. Equation(45) is the solution of governing equation (12) which represents the
height of free surface or water mound of infiltrated water in unsaturated
heterogeneous porous media for any distance for any time which satisfied
boundary and initial conditions.

6. Figure(3) shows that the height of frees surface or water mound is decreases
as X increases for different time T > 0 which is experimentally or physically
fact, which will decreases to zero as distance increasing to as per figure
shown.

7. Figure(3) shows the graph of height of free surface of infiltrated water in
homogeneous porous media vs. at distance X for T = 0.5 to 0.8.

8. Figure(4) shows the graph of pressure of infiltrated water p vs. distance X
for a fixed time T .
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